Inference for a two-component mixture of symmetric distributions under log-concavity
نویسندگان
چکیده
In this article, we revisit the problem of estimating the unknown zero-symmetric distribution in a two-component location mixture model, considered in previous works, now under the assumption that the zero-symmetric distribution has a log-concave density. When consistent estimators for the shift locations and mixing probability are used, we show that the nonparametric log-concave Maximum Likelihood estimator (MLE) of both the mixed density and that of the unknown zerosymmetric component are consistent in the Hellinger distance. In case the estimators for the shift locations and mixing probability are ? n-consistent, we establish that these MLE’s converge to the truth at the rate n 2{5 in the L1 distance. To estimate the shift locations and mixing probability, we use the estimators proposed by Hunter et al. (2007). The unknown zero-symmetric density is efficiently computed using the R package logcondens.mode. AMS 2000 subject classifications: Primary 62G07, 62H12; secondary 62G05, 62G20.
منابع مشابه
A Note on Log-Concavity
This is a small observation concerning scale mixtures and their log-concavity. A function f(x) ≥ 0, x ∈ Rn is called log-concave if f (λx + (1− λ)y) ≥ f(x)f(y) (1) for all x,y ∈ Rn, λ ∈ [0, 1]. Log-concavity is important in applied Bayesian Statistics, since a distribution with a log-concave density is easy to treat with many different approximate inference techniques. For example, log-concavit...
متن کاملThe Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models
In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...
متن کاملComparing Mean Vectors Via Generalized Inference in Multivariate Log-Normal Distributions
Abstract In this paper, we consider the problem of means in several multivariate log-normal distributions and propose a useful method called as generalized variable method. Simulation studies show that suggested method has a appropriate size and power regardless sample size. To evaluation this method, we compare this method with traditional MANOVA such that the actual sizes of the two methods ...
متن کاملInference for the Proportional Hazards Family under Progressive Type-II Censoring
In this paper, the well-known proportional hazards model which includes several well-known lifetime distributions such as exponential,Pareto, Lomax, Burr type XII, and so on is considered. With both Bayesian and non-Bayesian approaches , we consider the estimation of parameters of interest based on progressively Type-II right censored samples. The Bayes estimates are obtained based on symmetric...
متن کاملInference for mixtures of symmetric distributions
This article discusses the problem of estimation of parameters in finite mixtures when the mixture components are assumed to be symmetric and to come from the same location family. We refer to these mixtures as semi-parametric because no additional assumptions other than symmetry are made regarding the parametric form of the component distributions. Because the class of symmetric distributions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016